Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Stimul ; 17(1): 125-133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38266773

RESUMO

BACKGROUND: Deep brain stimulation (DBS) is an invasive treatment option for patients with Parkinson's disease. Recently, adaptive DBS (aDBS) systems have been developed, which adjust stimulation timing and amplitude in real-time. However, it is unknown how changes in parameters, movement states and the controllability of subthalamic beta activity affect aDBS performance. OBJECTIVE: To characterize how parameter choice, movement state and controllability interactively affect the electrophysiological and behavioral response to single threshold aDBS. METHODS: We recorded subthalamic local field potentials in 12 patients with Parkinson's disease receiving single threshold aDBS in the acute post-operative state. We investigated changes in two aDBS parameters: the onset time and the smoothing of real-time beta power. Electrophysiological patterns and motor performance were assessed while patients were at rest and during a simple motor task. We further studied the impact of controllability on aDBS performance by comparing patients with and without beta power modulation during continuous stimulation. RESULTS: Our findings reveal that changes in the onset time control the extent of beta power suppression achievable with single threshold adaptive stimulation during rest. Behavioral data indicate that only specific parameter combinations yield a beneficial effect of single threshold aDBS. During movement, action induced beta power suppression reduces the responsivity of the closed loop algorithm. We further demonstrate that controllability of beta power is a prerequisite for effective parameter dependent modulation of subthalamic beta activity. CONCLUSION: Our results highlight the interaction between single threshold aDBS parameter selection, movement state and controllability in driving subthalamic beta activity and motor performance. By this means, we identify directions for the further development of closed-loop DBS algorithms.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Estimulação Encefálica Profunda/métodos , Movimento/fisiologia , Fenômenos Eletrofisiológicos
2.
Mov Disord ; 38(12): 2185-2196, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37823518

RESUMO

BACKGROUND: Deep brain stimulation (DBS) is an effective treatment option for patients with Parkinson's disease (PD). However, clinical programming remains challenging with segmented electrodes. OBJECTIVE: Using novel sensing-enabled neurostimulators, we investigated local field potentials (LFPs) and their modulation by DBS to assess whether electrophysiological biomarkers may facilitate clinical programming in chronically implanted patients. METHODS: Sixteen patients (31 hemispheres) with PD implanted with segmented electrodes in the subthalamic nucleus and a sensing-enabled neurostimulator were included in this study. Recordings were conducted 3 months after DBS surgery following overnight withdrawal of dopaminergic medication. LFPs were acquired while stimulation was turned OFF and during a monopolar review of both directional and ring contacts. Directional beta power and stimulation-induced beta power suppression were computed. Motor performance, as assessed by a pronation-supination task, clinical programming and electrode placement were correlated to directional beta power and stimulation-induced beta power suppression. RESULTS: Better motor performance was associated with stronger beta power suppression at higher stimulation amplitudes. Across directional contacts, differences in directional beta power and the extent of stimulation-induced beta power suppression predicted motor performance. However, within individual hemispheres, beta power suppression was superior to directional beta power in selecting the contact with the best motor performance. Contacts clinically activated for chronic stimulation were associated with stronger beta power suppression than non-activated contacts. CONCLUSIONS: Our results suggest that stimulation-induced ß power suppression is superior to directional ß power in selecting the clinically most effective contact. In sum, electrophysiological biomarkers may guide programming of directional DBS systems in PD patients. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Estimulação Encefálica Profunda/métodos , Ritmo beta/fisiologia , Núcleo Subtalâmico/fisiologia , Biomarcadores
3.
Sensors (Basel) ; 23(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37299968

RESUMO

Bradykinesia is a cardinal hallmark of Parkinson's disease (PD). Improvement in bradykinesia is an important signature of effective treatment. Finger tapping is commonly used to index bradykinesia, albeit these approaches largely rely on subjective clinical evaluations. Moreover, recently developed automated bradykinesia scoring tools are proprietary and are not suitable for capturing intraday symptom fluctuation. We assessed finger tapping (i.e., Unified Parkinson's Disease Rating Scale (UPDRS) item 3.4) in 37 people with Parkinson's disease (PwP) during routine treatment follow ups and analyzed their 350 sessions of 10-s tapping using index finger accelerometry. Herein, we developed and validated ReTap, an open-source tool for the automated prediction of finger tapping scores. ReTap successfully detected tapping blocks in over 94% of cases and extracted clinically relevant kinematic features per tap. Importantly, based on the kinematic features, ReTap predicted expert-rated UPDRS scores significantly better than chance in a hold out validation sample (n = 102). Moreover, ReTap-predicted UPDRS scores correlated positively with expert ratings in over 70% of the individual subjects in the holdout dataset. ReTap has the potential to provide accessible and reliable finger tapping scores, either in the clinic or at home, and may contribute to open-source and detailed analyses of bradykinesia.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico , Doença de Parkinson/terapia , Hipocinesia/diagnóstico , Dedos , Fenômenos Biomecânicos
4.
Mov Disord ; 38(4): 692-697, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36718788

RESUMO

BACKGROUND: Subthalamic nucleus (STN) beta (13 - 35 Hz) activity is a biomarker reflecting motor state in Parkinson's disease (PD). Adaptive deep brain stimulation (DBS) aims to use beta activity for therapeutic adjustments, but many aspects of beta activity in real-life situations are unknown. OBJECTIVE: The aim was to investigate Christmas-related influences on beta activity in PD. METHODS: Differences in Christmas Day to nonfestive daily averages in chronic biomarker recordings in 4 PD patients with a sensing-enabled STN DBS implant were retrospectively analyzed. Sweet-spot and whole-brain network connectomic analyses were performed. RESULTS: Beta activity was significantly reduced on Christmas Eve in all patients (4.00-9.00 p.m.: -12.30 ± 10.78%, P = 0.015). A sweet spot in the dorsolateral STN connected recording sites to motor, premotor, and supplementary motor cortices. CONCLUSIONS: We demonstrate that festive events can reduce beta biomarker activity. We conclude that circadian and holiday-related changes should be considered when tailoring adaptive DBS algorithms to patient demands. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Estimulação Encefálica Profunda , Córtex Motor , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Estudos Retrospectivos , Núcleo Subtalâmico/fisiologia
5.
Lancet Digit Health ; 5(2): e59-e70, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36528541

RESUMO

BACKGROUND: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is highly effective in controlling motor symptoms in patients with Parkinson's disease. However, correct selection of stimulation parameters is pivotal to treatment success and currently follows a time-consuming and demanding trial-and-error process. We aimed to assess treatment effects of stimulation parameters suggested by a recently published algorithm (StimFit) based on neuroimaging data. METHODS: This double-blind, randomised, crossover, non-inferiority trial was carried out at Charité - Universitätsmedizin, Berlin, Germany, and enrolled patients with Parkinson's disease treated with directional octopolar electrodes targeted at the STN. All patients had undergone DBS programming according to our centre's standard of care (SoC) treatment before study recruitment. Based on perioperative imaging data, DBS electrodes were reconstructed and StimFit was applied to suggest optimal stimulation settings. Patients underwent motor assessments using the Movement Disorder Society-Sponsored Revision of the Unified Parkinson's Disease Rating Scale part III (MDS-UPDRS-III) during OFF-medication and in OFF-stimulation and ON-stimulation states under both conditions, StimFit and SoC parameter settings. Patients were randomly assigned (1:1) to receive either StimFit-programmed DBS first and SoC-programmed DBS second, or SoC-programmed DBS first and StimFit-programmed DBS second. The allocation schedule was generated using a computerised random number generator. Both the rater and patients were masked to the sequence of SoC and StimFit stimulation conditions. All patients who participated in the study were included in the analysis. The primary endpoint of this study was the absolute mean difference between MDS-UPDRS-III scores under StimFit and SoC stimulation, with a non-inferiority margin of 5 points. The study was registered at the German Register for Clinical Trials (DRKS00023115), and is complete. FINDINGS: Between July 10, 2020, and Oct 28, 2021, 35 patients were enrolled in the study; 18 received StimFit followed by SoC stimulation, and 17 received SoC followed by StimFit stimulation. Mean MDS-UPDRS-III scores improved from 47·3 (SD 17·1) at OFF-stimulation baseline to 24·7 (SD 12·4) and 26·3 (SD 12·4) under SoC and StimFit stimulation, respectively. Mean difference between motor scores was -1·6 (SD 7·1; 95% CI -4·0 to 0·9; superiority test psuperiority=0·20; n=35), establishing non-inferiority of StimFit stimulation at a margin of -5 points (non-inferiority test pnon-inferiority=0·0038). In six patients (17%), initial programming of StimFit settings resulted in acute side-effects and amplitudes were reduced until side-effects disappeared. INTERPRETATION: Automated data-driven algorithms can predict stimulation parameters that lead to motor symptom control comparable to SoC treatment. This approach could significantly decrease the time necessary to obtain optimal treatment parameters. FUNDING: Deutsche Forschungsgemeinschaft through NeuroCure Clinical Research Center and TRR 295.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/tratamento farmacológico , Estimulação Encefálica Profunda/métodos , Estudos Cross-Over , Núcleo Subtalâmico/fisiologia , Núcleo Subtalâmico/cirurgia , Eletrodos
6.
NPJ Parkinsons Dis ; 8(1): 88, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35804160

RESUMO

Beta-band activity in the subthalamic local field potential (LFP) is correlated with Parkinson's disease (PD) symptom severity and is the therapeutic target of deep brain stimulation (DBS). While beta fluctuations in PD patients are well characterized on shorter timescales, it is not known how beta activity evolves around the diurnal cycle, outside a clinical setting. Here, we obtained chronic recordings (34 ± 13 days) of subthalamic beta power in PD patients implanted with the Percept DBS device during high-frequency DBS and analysed their diurnal properties as well as sensitivity to artifacts. Time of day explained 41 ± 9% of the variance in beta power (p < 0.001 in all patients), with increased beta during the day and reduced beta at night. Certain movements affected LFP quality, which may have contributed to diurnal patterns in some patients. Future DBS algorithms may benefit from taking such diurnal and artifactual fluctuations in beta power into account.

7.
Behav Res Methods ; 54(2): 649-662, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34341962

RESUMO

Timed picture naming is a common psycholinguistic paradigm. In this task, participants are asked to label visually depicted objects or actions. Naming performance can be influenced by several picture and verb characteristics which demands fully characterized normative data. In this study, we provide a first German normative data set of picture and verb characteristics associated with a compilation of 283 freely available action pictures and 600 action verbs including naming latencies from 55 participants. We report standard measures for pictures and verbs such as name agreement indices, visual complexity, word frequency, word length, imageability and age of acquisition. In addition, we include less common parameters, such as orthographic Levenshtein distance, transitivity, reflexivity, morphological complexity, and motor content of the pictures and their associated verbs. We use repeated measures correlations in order to investigate associations between picture and word characteristics and linear mixed effects modeling for the prediction of naming latency. Our analyses reveal comparable results to previous studies in other languages, indicating high construct validity. We found that naming latency varied as a function of entropy of responses, word frequency and motor content of pictures and words. In summary, we provide first German normative data for action pictures and their associated verbs and identify variables influencing naming latency.


Assuntos
Idioma , Nomes , Humanos , Psicolinguística
8.
Exp Neurol ; 347: 113869, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34563510

RESUMO

A recent advancement in the field of neuromodulation is to adapt stimulation parameters according to pre-specified biomarkers tracked in real-time. These markers comprise short and transient signal features, such as bursts of elevated band power. To capture these features, instantaneous measures of phase and/or amplitude are employed, which inform stimulation adjustment with high temporal specificity. For adaptive neuromodulation it is therefore necessary to precisely estimate a signal's phase and amplitude with minimum delay and in a causal way, i.e. without depending on future parts of the signal. Here we demonstrate a method that utilizes oscillation theory to estimate phase and amplitude in real-time and compare it to a recently proposed causal modification of the Hilbert transform. By simulating real-time processing of human LFP data, we show that our approach almost perfectly tracks offline phase and amplitude with minimum delay and is computationally highly efficient.


Assuntos
Simulação por Computador , Estimulação Encefálica Profunda/métodos , Doença de Parkinson/terapia , Processamento de Sinais Assistido por Computador , Adulto , Idoso , Encéfalo/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
9.
Sci Rep ; 11(1): 18037, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34508149

RESUMO

Computation of the instantaneous phase and amplitude via the Hilbert Transform is a powerful tool of data analysis. This approach finds many applications in various science and engineering branches but is not proper for causal estimation because it requires knowledge of the signal's past and future. However, several problems require real-time estimation of phase and amplitude; an illustrative example is phase-locked or amplitude-dependent stimulation in neuroscience. In this paper, we discuss and compare three causal algorithms that do not rely on the Hilbert Transform but exploit well-known physical phenomena, the synchronization and the resonance. After testing the algorithms on a synthetic data set, we illustrate their performance computing phase and amplitude for the accelerometer tremor measurements and a Parkinsonian patient's beta-band brain activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...